Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 7(16): 4418-4430, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37171449

RESUMO

Many hematologic malignancies are not curable with chemotherapy and require novel therapeutic approaches. Chimeric antigen receptor (CAR) T-cell therapy is 1 such approach that involves the transfer of T cells engineered to express CARs for a specific cell-surface antigen. CD38 is a validated tumor antigen in multiple myeloma (MM) and T-cell acute lymphoblastic leukemia (T-ALL) and is also overexpressed in acute myeloid leukemia (AML). Here, we developed human CD38-redirected T cells (CART-38) as a unified approach to treat 3 different hematologic malignancies that occur across the pediatric-to-adult age spectrum. Importantly, CD38 expression on activated T cells did not impair CART-38 cells expansion or in vitro function. In xenografted mice, CART-38 mediated the rejection of AML, T-ALL, and MM cell lines and primary samples and prolonged survival. In a xenograft model of normal human hematopoiesis, CART-38 resulted in the expected reduction of hematopoietic progenitors, which warrants caution and careful monitoring of this potential toxicity when translating this new immunotherapy into the clinic. Deploying CART-38 against multiple CD38-expressing malignancies is significant because it expands the potential for this novel therapy to affect diverse patient populations.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Antígenos Quiméricos , Adulto , Animais , Criança , Humanos , Camundongos , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T
2.
J Proteome Res ; 20(11): 5203-5211, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34669412

RESUMO

With the rapid developments in mass spectrometry (MS)-based proteomics methods, label-free semiquantitative proteomics has become an increasingly popular tool for profiling global protein abundances in an unbiased manner. However, the reproducibility of these data across time and LC-MS platforms is not well characterized. Here, we evaluate the performance of three LC-MS platforms (Orbitrap Elite, Q Exactive HF, and Orbitrap Fusion) in label-free semiquantitative analysis of cell surface proteins over a six-year period. Sucrose gradient ultracentrifugation was used for surfaceome enrichment, following gel separation for in-depth protein identification. With our established workflow, we consistently detected and reproducibly quantified >2300 putative cell surface proteins in a human acute myeloid leukemia (AML) cell line on all three platforms. To our knowledge this is the first study reporting highly reproducible semiquantitative proteomic data collection of biological replicates across multiple years and LC-MS platforms. These data provide experimental justification for semiquantitative proteomic study designs that are executed over multiyear time intervals and on different platforms. Multiyear and multiplatform experimental designs will likely enable larger scale proteomic studies and facilitate longitudinal proteomic studies by investigators lacking access to high throughput MS facilities. Data are available via ProteomeXchange with identifier PXD022721.


Assuntos
Proteoma , Proteômica , Humanos , Espectrometria de Massas/métodos , Proteoma/análise , Proteômica/métodos , Reprodutibilidade dos Testes , Fluxo de Trabalho
3.
Nat Med ; 27(5): 842-850, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33888899

RESUMO

While CD19-directed chimeric antigen receptor (CAR) T cells can induce remission in patients with B cell acute lymphoblastic leukemia (ALL), a large subset relapse with CD19- disease. Like CD19, CD22 is broadly expressed by B-lineage cells and thus serves as an alternative immunotherapy target in ALL. Here we present the composite outcomes of two pilot clinical trials ( NCT02588456 and NCT02650414 ) of T cells bearing a 4-1BB-based, CD22-targeting CAR in patients with relapsed or refractory ALL. The primary end point of these studies was to assess safety, and the secondary end point was antileukemic efficacy. We observed unexpectedly low response rates, prompting us to perform detailed interrogation of the responsible CAR biology. We found that shortening of the amino acid linker connecting the variable heavy and light chains of the CAR antigen-binding domain drove receptor homodimerization and antigen-independent signaling. In contrast to CD28-based CARs, autonomously signaling 4-1BB-based CARs demonstrated enhanced immune synapse formation, activation of pro-inflammatory genes and superior effector function. We validated this association between autonomous signaling and enhanced function in several CAR constructs and, on the basis of these observations, designed a new short-linker CD22 single-chain variable fragment for clinical evaluation. Our findings both suggest that tonic 4-1BB-based signaling is beneficial to CAR function and demonstrate the utility of bedside-to-bench-to-bedside translation in the design and implementation of CAR T cell therapies.


Assuntos
Ligante 4-1BB/metabolismo , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos Quiméricos/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Linfócitos T/transplante , Adulto , Animais , Antígenos CD19/metabolismo , Linfócitos B/imunologia , Antígenos CD28/genética , Células Cultivadas , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Linfócitos T/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Nat Biotechnol ; 38(8): 947-953, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32361713

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has shown promise in hematologic malignancies, but its application to solid tumors has been challenging1-4. Given the unique effector functions of macrophages and their capacity to penetrate tumors5, we genetically engineered human macrophages with CARs to direct their phagocytic activity against tumors. We found that a chimeric adenoviral vector overcame the inherent resistance of primary human macrophages to genetic manipulation and imparted a sustained pro-inflammatory (M1) phenotype. CAR macrophages (CAR-Ms) demonstrated antigen-specific phagocytosis and tumor clearance in vitro. In two solid tumor xenograft mouse models, a single infusion of human CAR-Ms decreased tumor burden and prolonged overall survival. Characterization of CAR-M activity showed that CAR-Ms expressed pro-inflammatory cytokines and chemokines, converted bystander M2 macrophages to M1, upregulated antigen presentation machinery, recruited and presented antigen to T cells and resisted the effects of immunosuppressive cytokines. In humanized mouse models, CAR-Ms were further shown to induce a pro-inflammatory tumor microenvironment and boost anti-tumor T cell activity.


Assuntos
Imunoterapia Adotiva , Macrófagos/fisiologia , Neoplasias/terapia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Imunoterapia , Neoplasias Pulmonares/terapia , Camundongos , Microscopia de Vídeo , Neoplasias Experimentais
5.
Cancer Discov ; 10(4): 552-567, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32001516

RESUMO

Primary resistance to CD19-directed chimeric antigen receptor T-cell therapy (CART19) occurs in 10% to 20% of patients with acute lymphoblastic leukemia (ALL); however, the mechanisms of this resistance remain elusive. Using a genome-wide loss-of-function screen, we identified that impaired death receptor signaling in ALL led to rapidly progressive disease despite CART19 treatment. This was mediated by an inherent resistance to T-cell cytotoxicity that permitted antigen persistence and was subsequently magnified by the induction of CAR T-cell functional impairment. These findings were validated using samples from two CAR T-cell clinical trials in ALL, where we found that reduced expression of death receptor genes was associated with worse overall survival and reduced T-cell fitness. Our findings suggest that inherent dysregulation of death receptor signaling in ALL directly leads to CAR T-cell failure by impairing T-cell cytotoxicity and promoting progressive CAR T-cell dysfunction. SIGNIFICANCE: Resistance to CART19 is a significant barrier to efficacy in the treatment of B-cell malignancies. This work demonstrates that impaired death receptor signaling in tumor cells causes failed CART19 cytotoxicity and drives CART19 dysfunction, identifying a novel mechanism of antigen-independent resistance to CAR therapy.See related commentary by Green and Neelapu, p. 492.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Morte Celular/metabolismo , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Transdução de Sinais
6.
Blood ; 135(7): 505-509, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31703119

RESUMO

Unintentional transduction of B-cell acute lymphoblastic leukemia blasts during CART19 manufacturing can lead to CAR19+ leukemic cells (CARB19) that are resistant to CART19 killing. We developed an anti-CAR19 idiotype chimeric antigen receptor (αCAR19) to specifically recognize CAR19+ cells. αCAR19 CAR T cells efficiently lysed CARB19 cells in vitro and in a primary leukemia-derived xenograft model. We further showed that αCAR19-CART cells could be used as an "antidote" to deplete CART19 cells to reduce long-term side effects, such as B-cell aplasia.


Assuntos
Antígenos CD19/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Citotoxicidade Imunológica , Humanos , Imunoterapia Adotiva , Camundongos
7.
Nat Commun ; 10(1): 650, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737373

RESUMO

During wound healing in adult mouse skin, hair follicles and then adipocytes regenerate. Adipocytes regenerate from myofibroblasts, a specialized contractile wound fibroblast. Here we study wound fibroblast diversity using single-cell RNA-sequencing. On analysis, wound fibroblasts group into twelve clusters. Pseudotime and RNA velocity analyses reveal that some clusters likely represent consecutive differentiation states toward a contractile phenotype, while others appear to represent distinct fibroblast lineages. One subset of fibroblasts expresses hematopoietic markers, suggesting their myeloid origin. We validate this finding using single-cell western blot and single-cell RNA-sequencing on genetically labeled myofibroblasts. Using bone marrow transplantation and Cre recombinase-based lineage tracing experiments, we rule out cell fusion events and confirm that hematopoietic lineage cells give rise to a subset of myofibroblasts and rare regenerated adipocytes. In conclusion, our study reveals that wounding induces a high degree of heterogeneity among fibroblasts and recruits highly plastic myeloid cells that contribute to adipocyte regeneration.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Análise de Célula Única/métodos , Pele/citologia , Células-Tronco/citologia , Animais , Western Blotting , Células Cultivadas , Feminino , Masculino , Camundongos , Análise de Sequência de RNA , Células-Tronco/metabolismo , Cicatrização/fisiologia
8.
Nat Med ; 24(10): 1499-1503, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30275568

RESUMO

We report a patient relapsing 9 months after CD19-targeted CAR T cell (CTL019) infusion with CD19- leukemia that aberrantly expressed the anti-CD19 CAR. The CAR gene was unintentionally introduced into a single leukemic B cell during T cell manufacturing, and its product bound in cis to the CD19 epitope on the surface of leukemic cells, masking it from recognition by and conferring resistance to CTL019.


Assuntos
Antígenos CD19/imunologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Epitopos/imunologia , Leucemia/tratamento farmacológico , Adulto , Antígenos CD19/uso terapêutico , Linfócitos B/imunologia , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Leucemia/imunologia , Leucemia/patologia , Masculino , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Receptores de Antígenos Quiméricos , Linfócitos T/imunologia , Adulto Jovem
9.
Cell ; 173(6): 1439-1453.e19, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29856956

RESUMO

The absence of cancer-restricted surface markers is a major impediment to antigen-specific immunotherapy using chimeric antigen receptor (CAR) T cells. For example, targeting the canonical myeloid marker CD33 in acute myeloid leukemia (AML) results in toxicity from destruction of normal myeloid cells. We hypothesized that a leukemia-specific antigen could be created by deleting CD33 from normal hematopoietic stem and progenitor cells (HSPCs), thereby generating a hematopoietic system resistant to CD33-targeted therapy and enabling specific targeting of AML with CAR T cells. We generated CD33-deficient human HSPCs and demonstrated normal engraftment and differentiation in immunodeficient mice. Autologous CD33 KO HSPC transplantation in rhesus macaques demonstrated long-term multilineage engraftment of gene-edited cells with normal myeloid function. CD33-deficient cells were impervious to CD33-targeting CAR T cells, allowing for efficient elimination of leukemia without myelotoxicity. These studies illuminate a novel approach to antigen-specific immunotherapy by genetically engineering the host to avoid on-target, off-tumor toxicity.


Assuntos
Células-Tronco Hematopoéticas/citologia , Imunoterapia/métodos , Leucemia Mieloide Aguda/terapia , RNA Guia de Cinetoplastídeos/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Linfócitos T/imunologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Linhagem da Célula , Eletroporação , Feminino , Hematopoese , Humanos , Leucemia Mieloide Aguda/imunologia , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Transplante de Neoplasias , Espécies Reativas de Oxigênio , Linfócitos T/citologia
10.
Cancer Discov ; 7(10): 1154-1167, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28576927

RESUMO

Patients with otherwise treatment-resistant Hodgkin lymphoma could benefit from chimeric antigen receptor T-cell (CART) therapy. However, Hodgkin lymphoma lacks CD19 and contains a highly immunosuppressive tumor microenvironment (TME). We hypothesized that in Hodgkin lymphoma, CART should target both malignant cells and the TME. We demonstrated CD123 on both Hodgkin lymphoma cells and TME, including tumor-associated macrophages (TAM). In vitro, Hodgkin lymphoma cells convert macrophages toward immunosuppressive TAMs that inhibit T-cell proliferation. In contrast, anti-CD123 CART recognized and killed TAMs, thus overcoming immunosuppression. Finally, we showed in immunodeficient mouse models that CART123 eradicated Hodgkin lymphoma and established long-term immune memory. A novel platform that targets malignant cells and the microenvironment may be needed to successfully treat malignancies with an immunosuppressive milieu.Significance: Anti-CD123 chimeric antigen receptor T cells target both the malignant cells and TAMs in Hodgkin lymphoma, thereby eliminating an important immunosuppressive component of the tumor microenvironment. Cancer Discov; 7(10); 1154-67. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1047.


Assuntos
Doença de Hodgkin/terapia , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Macrófagos/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/transplante , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Doença de Hodgkin/imunologia , Humanos , Células K562 , Macrófagos/citologia , Macrófagos/patologia , Camundongos , Linfócitos T/imunologia , Microambiente Tumoral
11.
Blood ; 129(17): 2395-2407, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28246194

RESUMO

We and others previously reported potent antileukemia efficacy of CD123-redirected chimeric antigen receptor (CAR) T cells in preclinical human acute myeloid leukemia (AML) models at the cost of severe hematologic toxicity. This observation raises concern for potential myeloablation in patients with AML treated with CD123-redirected CAR T cells and mandates novel approaches for toxicity mitigation. We hypothesized that CAR T-cell depletion with optimal timing after AML eradication would preserve leukemia remission and allow subsequent hematopoietic stem cell transplantation. To test this hypothesis, we compared 3 CAR T-cell termination strategies: (1) transiently active anti-CD123 messenger RNA-electroporated CART (RNA-CART123); (2) T-cell ablation with alemtuzumab after treatment with lentivirally transduced anti-CD123-4-1BB-CD3ζ T cells (CART123); and (3) T-cell ablation with rituximab after treatment with CD20-coexpressing CART123 (CART123-CD20). All approaches led to rapid leukemia elimination in murine xenograft models of human AML. Subsequent antibody-mediated depletion of CART123 or CART123-CD20 did not impair leukemia remission. Time-course studies demonstrated that durable leukemia remission required CAR T-cell persistence for 4 weeks prior to ablation. Upon CAR T-cell termination, we further demonstrated successful hematopoietic engraftment with a normal human donor to model allogeneic stem cell rescue. Results from these studies will facilitate development of T-cell depletion strategies to augment the feasibility of CAR T-cell therapy for patients with AML.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Imunoterapia Adotiva/métodos , Subunidade alfa de Receptor de Interleucina-3/imunologia , Leucemia Mieloide Aguda/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Alemtuzumab , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Antígenos CD20/genética , Antígenos CD20/imunologia , Complexo CD3/genética , Complexo CD3/imunologia , Feminino , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-3/antagonistas & inibidores , Subunidade alfa de Receptor de Interleucina-3/genética , Lentivirus/genética , Lentivirus/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Depleção Linfocítica , Masculino , Camundongos , Camundongos Endogâmicos NOD , RNA Antissenso/genética , RNA Antissenso/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Indução de Remissão , Rituximab/farmacologia , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/transplante , Transplante Heterólogo , Resultado do Tratamento , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Proteomics ; 17(7)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28116781

RESUMO

The proteins of the cellular plasma membrane (PM) perform important functions relating to homeostasis and intercellular communication. Due to its overall low cellular abundance, amphipathic character, and low membrane-to-cytoplasm ratio, the PM proteome has been challenging to isolate and characterize, and is poorly represented in standard LC-MS/MS analyses. In this study, we employ sucrose gradient ultracentrifugation for the enrichment of the PM proteome, without chemical labeling and affinity purification, together with GeLCMS and use subsequent bioinformatics tools to select proteins associated with the PM/cell surface, herein referred to as the surfaceome. Using this methodology, we identify over 1900 cell surface associated proteins in a human acute myeloid leukemia cell line. These surface proteins comprise almost 50% of all detected cellular proteins, a number that substantially exceeds the depth of coverage in previously published studies describing the leukemia surfaceome.


Assuntos
Membrana Celular/química , Biologia Computacional/métodos , Leucócitos/química , Proteínas de Membrana/isolamento & purificação , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Centrifugação com Gradiente de Concentração , Cromatografia Líquida , Humanos , Leucócitos/metabolismo , Sacarose/química , Espectrometria de Massas em Tandem , Ultracentrifugação/métodos
13.
Blood ; 128(18): 2229-2240, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27670423

RESUMO

Activating NOTCH1 mutations are frequent in human T-cell acute lymphoblastic leukemia (T-ALL) and Notch inhibitors (γ-secretase inhibitors [GSIs]) have produced responses in patients with relapsed, refractory disease. However, sustained responses, although reported, are uncommon, suggesting that other pathways can substitute for Notch in T-ALL. To address this possibility, we first generated KrasG12D transgenic mice with T-cell-specific expression of the pan-Notch inhibitor, dominant-negative Mastermind (DNMAML). These mice developed leukemia, but instead of accessing alternative oncogenic pathways, the tumor cells acquired Notch1 mutations and subsequently deleted DNMAML, reinforcing the notion that activated Notch1 is particularly transforming within the context of T-cell progenitors. We next took a candidate approach to identify oncogenic pathways downstream of Notch, focusing on Myc and Akt, which are Notch targets in T-cell progenitors. KrasG12D mice transduced with Myc developed T-ALLs that were GSI-insensitive and lacked Notch1 mutations. In contrast, KrasG12D mice transduced with myristoylated AKT developed GSI-sensitive T-ALLs that acquired Notch1 mutations. Thus, Myc can substitute for Notch1 in leukemogenesis, whereas Akt cannot. These findings in primary tumors extend recent work using human T-ALL cell lines and xenografts and suggest that the Notch/Myc signaling axis is of predominant importance in understanding both the selective pressure for Notch mutations in T-ALL and response and resistance of T-ALL to Notch pathway inhibitors.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas c-myc/genética , Receptor Notch1/genética , Animais , Western Blotting , Modelos Animais de Doenças , Citometria de Fluxo , Camundongos , Camundongos Transgênicos , Mutação , Reação em Cadeia da Polimerase em Tempo Real
14.
J Clin Invest ; 126(10): 3814-3826, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27571406

RESUMO

Potent CD19-directed immunotherapies, such as chimeric antigen receptor T cells (CART) and blinatumomab, have drastically changed the outcome of patients with relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL). However, CD19-negative relapses have emerged as a major problem that is observed in approximately 30% of treated patients. Developing approaches to preventing and treating antigen-loss escapes would therefore represent a vertical advance in the field. Here, we found that in primary patient samples, the IL-3 receptor α chain CD123 was highly expressed on leukemia-initiating cells and CD19-negative blasts in bulk B-ALL at baseline and at relapse after CART19 administration. Using intravital imaging in an antigen-loss CD19-negative relapse xenograft model, we determined that CART123, but not CART19, recognized leukemic blasts, established protracted synapses, and eradicated CD19-negative leukemia, leading to prolonged survival. Furthermore, combining CART19 and CART123 prevented antigen-loss relapses in xenograft models. Finally, we devised a dual CAR-expressing construct that combined CD19- and CD123-mediated T cell activation and demonstrated that it provides superior in vivo activity against B-ALL compared with single-expressing CART or pooled combination CART. In conclusion, these findings indicate that targeting CD19 and CD123 on leukemic blasts represents an effective strategy for treating and preventing antigen-loss relapses occurring after CD19-directed therapies.


Assuntos
Antígenos CD19/metabolismo , Antineoplásicos/administração & dosagem , Subunidade alfa de Receptor de Interleucina-3/administração & dosagem , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Receptores de Antígenos de Linfócitos T/administração & dosagem , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Imunoterapia/métodos , Camundongos Endogâmicos NOD , Camundongos SCID , Recidiva Local de Neoplasia/prevenção & controle , Células-Tronco Neoplásicas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Linfócitos T/imunologia , Linfócitos T/transplante , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Clin Cancer Res ; 22(11): 2684-96, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26819453

RESUMO

PURPOSE: Responses to therapy with chimeric antigen receptor T cells recognizing CD19 (CART19, CTL019) may vary by histology. Mantle cell lymphoma (MCL) represents a B-cell malignancy that remains incurable despite novel therapies such as the BTK inhibitor ibrutinib, and where data from CTL019 therapy are scant. Using MCL as a model, we sought to build upon the outcomes from CTL019 and from ibrutinib therapy by combining these in a rational manner. EXPERIMENTAL DESIGN: MCL cell lines and primary MCL samples were combined with autologous or normal donor-derived anti-CD19 CAR T cells along with ibrutinib. The effect of the combination was studied in vitro and in mouse xenograft models. RESULTS: MCL cells strongly activated multiple CTL019 effector functions, and MCL killing by CTL019 was further enhanced in the presence of ibrutinib. In a xenograft MCL model, we showed superior disease control in the CTL019- as compared with ibrutinib-treated mice (median survival not reached vs. 95 days, P < 0.005) but most mice receiving CTL019 monotherapy eventually relapsed. Therefore, we added ibrutinib to CTL019 and showed that 80% to 100% of mice in the CTL019 + ibrutinib arm and 0% to 20% of mice in the CTL019 arm, respectively, remained in long-term remission (P < 0.05). CONCLUSIONS: Combining CTL019 with ibrutinib represents a rational way to incorporate two of the most recent therapies in MCL. Our findings pave the way to a two-pronged therapeutic strategy in patients with MCL and other types of B-cell lymphoma. Clin Cancer Res; 22(11); 2684-96. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Linfoma de Célula do Manto/tratamento farmacológico , Pirazóis/farmacologia , Pirimidinas/farmacologia , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Animais , Linhagem Celular Tumoral , Terapia Combinada , Resistencia a Medicamentos Antineoplásicos , Humanos , Imunoterapia Adotiva , Camundongos Endogâmicos NOD , Camundongos SCID , Piperidinas , Proteínas Tirosina Quinases/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/transplante , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cell Rep ; 12(11): 1842-52, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26365182

RESUMO

Genome-wide analysis of thymic lymphomas from Tp53(-/-) mice with wild-type or C-terminally truncated Rag2 revealed numerous off-target, RAG-mediated DNA rearrangements. A significantly higher fraction of these errors mutated known and suspected oncogenes/tumor suppressor genes than did sporadic rearrangements (p < 0.0001). This tractable mouse model recapitulates recent findings in human pre-B ALL and allows comparison of wild-type and mutant RAG2. Recurrent, RAG-mediated deletions affected Notch1, Pten, Ikzf1, Jak1, Phlda1, Trat1, and Agpat9. Rag2 truncation substantially increased the frequency of off-target V(D)J recombination. The data suggest that interactions between Rag2 and a specific chromatin modification, H3K4me3, support V(D)J recombination fidelity. Oncogenic effects of off-target rearrangements created by this highly regulated recombinase may need to be considered in design of site-specific nucleases engineered for genome modification.


Assuntos
Proteínas de Ligação a DNA/genética , Linfoma/genética , Neoplasias do Timo/genética , Proteínas Supressoras de Tumor/genética , Recombinação V(D)J , Animais , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Linfoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias do Timo/metabolismo , Proteínas Supressoras de Tumor/metabolismo
17.
Nucleic Acids Res ; 42(10): 6352-64, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24753404

RESUMO

DNA double-stranded breaks (DSBs) can be repaired by several mechanisms, including classical NHEJ (c-NHEJ) and a poorly defined, error-prone process termed alternative NHEJ (a-NHEJ). How cells choose between these alternatives to join physiologic DSBs remains unknown. Here, we show that deletion of RAG2's C-terminus allows a-NHEJ to repair RAG-mediated DSBs in developing lymphocytes from both c-NHEJ-proficient and c-NHEJ-deficient mice, demonstrating that the V(D)J recombinase influences repair pathway choice in vivo. Analysis of V(D)J junctions revealed that, contrary to expectation, junctional characteristics alone do not reliably distinguish between a-NHEJ and c-NHEJ. These data suggest that a-NHEJ is not necessarily mutagenic, and may be more prevalent than previously appreciated. Whole genome sequencing of a lymphoma arising in a p53(-/-) mouse bearing a C-terminal RAG2 truncation reveals evidence of a-NHEJ and also of aberrant recognition of DNA sequences resembling RAG recognition sites.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/genética , Animais , Antígenos Nucleares/genética , Genes p53 , Autoantígeno Ku , Linfoma/genética , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/genética , Deleção de Sequência , Translocação Genética , Recombinação V(D)J
18.
Blood ; 123(15): 2343-54, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24596416

RESUMO

Many patients with acute myeloid leukemia (AML) are incurable with chemotherapy and may benefit from novel approaches. One such approach involves the transfer of T cells engineered to express chimeric antigen receptors (CARs) for a specific cell-surface antigen. This strategy depends upon preferential expression of the target on tumor cells. To date, the lack of AML-specific surface markers has impeded development of such CAR-based approaches. CD123, the transmembrane α chain of the interleukin-3 receptor, is expressed in the majority of AML cells but is also expressed in many normal hematopoietic cells. Here, we show that CD123 is a good target for AML-directed CAR therapy, because its expression increases over time in vivo even in initially CD123(dim) populations, and that human CD123-redirected T cells (CART123) eradicate primary AML in immunodeficient mice. CART123 also eradicated normal human myelopoiesis, a surprising finding because anti-CD123 antibody-based strategies have been reportedly well tolerated. Because AML is likely preceded by clonal evolution in "preleukemic" hematopoietic stem cells, our observations support CART123 as a viable AML therapy, suggest that CART123-based myeloablation may be used as a novel conditioning regimen for hematopoietic cell transplantation, and raise concerns for the use of CART123 without such a rescue strategy.


Assuntos
Antígenos de Neoplasias/imunologia , Imunoterapia/métodos , Subunidade alfa de Receptor de Interleucina-3/imunologia , Leucemia Mieloide Aguda/imunologia , Linfócitos T/transplante , Animais , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Genes Dev ; 28(6): 576-93, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24637115

RESUMO

Notch1 is required to generate the earliest embryonic hematopoietic stem cells (HSCs); however since Notch-deficient embryos die early in gestation, additional functions for Notch in embryonic HSC biology have not been described. We used two complementary genetic models to address this important biological question. Unlike Notch1-deficient mice, mice lacking the conserved Notch1 transcriptional activation domain (TAD) show attenuated Notch1 function in vivo and survive until late gestation, succumbing to multiple cardiac abnormalities. Notch1 TAD-deficient HSCs emerge and successfully migrate to the fetal liver but are decreased in frequency by embryonic day 14.5. In addition, TAD-deficient fetal liver HSCs fail to compete with wild-type HSCs in bone marrow transplant experiments. This phenotype is independently recapitulated by conditional knockout of Rbpj, a core Notch pathway component. In vitro analysis of Notch1 TAD-deficient cells shows that the Notch1 TAD is important to properly assemble the Notch1/Rbpj/Maml trimolecular transcription complex. Together, these studies reveal an essential role for the Notch1 TAD in fetal development and identify important cell-autonomous functions for Notch1 signaling in fetal HSC homeostasis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/fisiologia , Receptor Notch1/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Células-Tronco Fetais , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Células-Tronco Hematopoéticas/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Camundongos , Mutação , Estrutura Terciária de Proteína/genética , Receptor Notch1/genética , Análise de Sobrevida
20.
Blood ; 121(6): 905-17, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23115273

RESUMO

The leukemia stem cell (LSC) hypothesis proposes that a subset of cells in the bulk leukemia population propagates the leukemia.We tested the LSC hypothesis in a mouse model of Notch-induced T-cell acute lymphoblastic leukemia (T-ALL) in which the tumor cells were largely CD4+ CD8+ T cells. LSC activity was enriched but rare in the CD8+ CD4 HSA(hi) immature single-positive T-cell subset. Although our murine T-ALL model relies on transduction of HSCs, we were unable to isolate Notch-activated HSCs to test for LSC activity. Further analysis showed that Notch activation in HSCs caused an initial expansion of hematopoietic and T-cell progenitors and loss of stem cell quiescence, which was followed by progressive loss of long-term HSCs and T-cell production over several weeks. Similar results were obtained in a conditional transgenic model in which Notch activation is induced in HSCs by Cre recombinase. We conclude that although supraphysiologic Notch signaling in HSCs promotes LSC activity in T-cell progenitors, it extinguishes self-renewal of LT-HSCs. These results provide further evidence for therapeutically targeting T-cell progenitors in T-ALL while also underscoring the need to tightly regulate Notch signaling to expand normal HSC populations for clinical applications.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Células 3T3 , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Fluoruracila/farmacologia , Células HEK293 , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Células-Tronco Neoplásicas/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/fisiopatologia , Receptores Notch/genética , Receptores Notch/fisiologia , Linfócitos T/metabolismo , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...